Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716508

RESUMEN

Four mononuclear CoII complexes of formula [Co(L)(SCN)2(CH3OH)0.5(H2O)0.5]·1.5H2O·0.75CH3OH (1), [Co(L1)Cl2]·H2O·2CH3CN (2), [Co(L1)(SCN)2]·1.5H2O·CH3OH (3) and [Co(L1)]ClO4·2CH3OH (4) were prepared from the N6-tripodal Schiff base ligands (S)P[N(Me)NC(H)2-Q]3 (L) and (S)P[N(Me)NC(H)1-ISOQ]3 (L1), where Q and ISOQ represent quinolyl and isoquinolyl moieties, respectively. In 1, the L ligand does not coordinate to the CoII ion in a tripodal manner but using a new N,N,S tridentate mode, which is due to the fact that the N6-tripodal coordination promotes a strong steric hindrance between the quinolyl moieties. However, L1 can coordinate to the CoII ions either in a tripodal manner using CoII salts with poorly coordinating anions to give 4 or in a bisbidentate fashion using CoII salt-containing medium to strongly coordinating anions to afford 2 and 3. In the case of L1, there is no steric hindrance between ISOQ moieties after coordination to the CoII ion. The CoII ion exhibits a distorted octahedral geometry for compounds 1-3, with the anions in cis positions for the former and in trans positions for the two latter compounds. Compound 4 shows an intermediate geometry between an octahedral and trigonal prism but closer to the latter one. DC magnetic properties, HFEPR and FIRMS measurements and ab initio calculations demonstrate that distorted octahedral complexes 1-3 exhibit easy-plane magnetic anisotropy (D > 0), whereas compound 4 shows large easy-axis magnetic anisotropy (D < 0). Comparative analysis of the magneto-structural data underlines the important role that is played not only by the coordination geometry but also the electronic effects in determining the anisotropy of the CoII ions. Compounds 2-3 show a field-induced slow relaxation of magnetization. Despite its large easy-axis magnetic anisotropy, compound 4 does not show significant slow relaxation (SMR) above 2 K under zero applied magnetic fields, but its magnetic dilution with ZnII triggers SMR at zero field. Finally, it is worth remarking that compounds 2-4 show smaller relaxation times than the analogous complexes with the tripodal ligand bearing in its arms pyridine instead of isoquinoline moieties, which is most likely due to the increase of the molecular size in the former one.

2.
Inorg Chem ; 63(10): 4511-4526, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38408452

RESUMEN

The ß-diketiminate supporting group, [ArNCRCHCRNAr]-, stabilizes low coordination number complexes. Four such complexes, where R = tert-butyl, Ar = 2,6-diisopropylphenyl, are studied: (nacnactBu)ML, where M = FeII, CoII and L = Cl, CH3. These are denoted FeCl, FeCH3, CoCl, and CoCH3 and have been previously reported and structurally characterized. The two FeII complexes (S = 2) have also been previously characterized by Mössbauer spectroscopy, but only indirect assessment of the ligand-field splitting and zero-field splitting (zfs) parameters was available. Here, EPR spectroscopy is used, both conventional field-domain for the CoII complexes (with S = 3/2) and frequency-domain, far-infrared magnetic resonance spectroscopy (FIRMS) for all four complexes. The CoII complexes were also studied by magnetometry. These studies allow accurate determination of the zfs parameters. The two FeII complexes are similar with nearly axial zfs and large magnitude zfs given by D = -37 ± 1 cm-1 for both. The two CoII complexes likewise exhibit large and nearly axial zfs, but surprisingly, CoCl has positive D = +55 cm-1 while CoCH3 has negative D = -49 cm-1. Theoretical methods were used to probe the electronic structures of the four complexes, which explain the experimental spectra and the zfs parameters.

3.
J Am Chem Soc ; 146(6): 3609-3614, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38290427

RESUMEN

We introduce the arsenido ligand onto the TiIV ion, yielding a remarkably covalent Ti≡As bond and the parent arsinidene Ti═AsH moiety. An anionic arsenido ligand is assembled via reductive decarbonylation involving the discrete TiII salt [K(cryptand)][(PN)2TiCl] (1) (cryptand = 222-Kryptofix) and Na(OCAs)(dioxane)1.5 in thf/toluene to produce the mixed alkali ate-complex [(PN)2Ti(As)]2(µ2-KNa(thf)2) (2) and the discrete salt [K(cryptand)][(PN)2Ti≡As] (3) featuring a terminal Ti≡As ligand. Protonation of 2 or 3 with various weak acids cleanly forms the parent arsinidene [(PN)2Ti═AsH] (4), which upon deprotonation with KCH2Ph in thf generates the more symmetric anionic arsenido [(PN)2Ti(As){µ2-K(thf)2}]2 (5). Experimental and computational studies suggest the pKa of 4 to be ∼23, and the bond orders in 2, 3, and 5 are all in the range of a Ti≡As triple bond, with decreasing bond order in 4.

4.
Nat Commun ; 14(1): 5454, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37673921

RESUMEN

Haldane topological materials contain unique antiferromagnetic chains with symmetry-protected energy gaps. Such materials have potential applications in spintronics and future quantum computers. Haldane topological solids typically consist of spin-1 chains embedded in extended three-dimensional (3D) crystal structures. Here, we demonstrate that [Ni(µ-4,4'-bipyridine)(µ-oxalate)]n (NiBO) instead adopts a two-dimensional (2D) metal-organic framework (MOF) structure of Ni2+ spin-1 chains weakly linked by 4,4'-bipyridine. NiBO exhibits Haldane topological properties with a gap between the singlet ground state and the triplet excited state. The latter is split by weak axial and rhombic anisotropies. Several experimental probes, including single-crystal X-ray diffraction, variable-temperature powder neutron diffraction (VT-PND), VT inelastic neutron scattering (VT-INS), DC susceptibility and specific heat measurements, high-field electron spin resonance, and unbiased quantum Monte Carlo simulations, provide a detailed, comprehensive characterization of NiBO. Vibrational (also known as phonon) properties of NiBO have been probed by INS and density-functional theory (DFT) calculations, indicating the absence of phonons near magnetic excitations in NiBO, suppressing spin-phonon coupling. The work here demonstrates that NiBO is indeed a rare 2D-MOF Haldane topological material.

5.
J Magn Reson ; 353: 107480, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37331305

RESUMEN

Electron Paramagnetic Resonance (EPR) is a powerful technique to study materials and biological samples on an atomic scale. High-field EPR in particular enables extracting very small g-anisotropies in organic radicals and half-filled 3d and 4f metal ions such as MnII (3d5) or GdIII (4f7), and resolving EPR signals from unpaired spins with very close g-values, both of which provide high-resolution details of the local atomic environment. Before the recent commissioning of the high-homogeneity Series Connected Hybrid magnet (SCH, superconducting + resistive) at the National High Magnetic Field Laboratory (NHMFL), the highest-field, high-resolution EPR spectrometer available was limited to 25 T using a purely resistive "Keck" magnet at the NHMFL. Herein, we report the first EPR experiments performed using the SCH magnet capable of reaching the field of 36 T, corresponding to an EPR frequency of 1 THz for g = 2. The magnet's intrinsic homogeneity (25 ppm, that is 0.9 mT at 36 T over 1 cm diameter, 1 cm length cylinder) was previously established by NMR. We characterized the magnet's temporal stability (5 ppm, which is 0.2 mT at 36 T over one-minute, the typical acquisition time) using 2,2-diphenyl-1-picrylhydrazyl (DPPH). This high resolution enables resolving the weak g-anisotropy of 1,3-bis(diphenylene)-2-phenylallyl (BDPA), Δg = 2.5 × 10-4 obtained from measurements at 932 GHz and 33 T. Subsequently, we recorded EPR spectra at multiple frequencies for two GdIII complexes with potential applications as spin labels. We demonstrated a significant reduction in line broadening in Gd[DTPA], attributed to second order zero field splitting, and a resolution enhancement of g-tensor anisotropy for Gd[sTPATCN]-SL.

6.
Inorg Chem ; 62(15): 5984-6002, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37000941

RESUMEN

The observation of single-molecule magnetism in transition-metal complexes relies on the phenomenon of zero-field splitting (ZFS), which arises from the interplay of spin-orbit coupling (SOC) with ligand-field-induced symmetry lowering. Previous studies have demonstrated that the magnitude of ZFS in complexes with 3d metal ions is sometimes enhanced through coordination with heavy halide ligands (Br and I) that possess large free-atom SOC constants. In this study, we systematically probe this "heavy-atom effect" in high-spin cobalt(II)-halide complexes supported by substituted hydrotris(pyrazol-1-yl)borate ligands (TptBu,Me and TpPh,Me). Two series of complexes were prepared: [CoIIX(TptBu,Me)] (1-X; X = F, Cl, Br, and I) and [CoIIX(TpPh,Me)(HpzPh,Me)] (2-X; X = Cl, Br, and I), where HpzPh,Me is a monodentate pyrazole ligand. Examination with dc magnetometry, high-frequency and -field electron paramagnetic resonance, and far-infrared magnetic spectroscopy yielded axial (D) and rhombic (E) ZFS parameters for each complex. With the exception of 1-F, complexes in the four-coordinate 1-X series exhibit positive D-values between 10 and 13 cm-1, with no dependence on halide size. The five-coordinate 2-X series exhibit large and negative D-values between -60 and -90 cm-1. Interpretation of the magnetic parameters with the aid of ligand-field theory and ab initio calculations elucidated the roles of molecular geometry, ligand-field effects, and metal-ligand covalency in controlling the magnitude of ZFS in cobalt-halide complexes.

7.
Dalton Trans ; 52(7): 2036-2050, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36692040

RESUMEN

During the last few years, a large number of mononuclear Co(II) complexes of various coordination geometries have been explored as potential single ion magnets (SIMs). In the work presented herein, the Co(II) S = 3/2 tetrahedral [Co{(OPPh2)(EPPh2)N}2], E = S, Se, complexes (abbreviated as CoO2E2), bearing chalcogenated mixed donor-atom imidodiphosphinato ligands, were studied by both experimental and computational techniques. Specifically, direct current (DC) magnetometry provided estimations of their zero-field splitting (zfs) axial (D) and rhombic (E) parameter values, which were more accurately determined by a combination of far-infrared magnetic spectroscopy and high-frequency and -field EPR spectroscopy studies. The latter combination of techniques was also implemented for the S = 3/2 tetrahedral [Co{(EPiPr2)2N}2], E = S, Se, complexes, confirming the previously determined magnitude of their zfs parameters. For both pairs of complexes (E = S, Se), it is concluded that the identity of the E donor atom does not significantly affect their zfs parameters. High-resolution multifrequency EPR studies of CoO2E2 provided evidence of multiple conformations, which are more clearly observed for CoO2Se2, in agreement with the structural disorder previously established for this complex by X-ray crystallography. The CoO2E2 complexes were shown to be field-induced SIMs, i.e., they exhibit slow relaxation of magnetization in the presence of an external DC magnetic field. Advanced quantum-chemical calculations on CoO2E2 provided additional insight into their electronic and structural properties.

8.
Chem Commun (Camb) ; 59(7): 952-955, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36597978

RESUMEN

The replacement of pyridine by 1-methyl-imidazol in the arms of a N6-tripodal ligand allows preparing two new CoII complexes with quasi-ideal triangular prismatic geometry, which behave as SIMs (Single Ion Magnets) at zero dc field with enhanced axial magnetic anisotropy, magnetic relaxation times and magnetic hysteresis.

9.
J Am Chem Soc ; 144(23): 10201-10219, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35652694

RESUMEN

Transmetallation of [VCl3(THF)3] and [TlTptBu,Me] afforded [(TptBu,Me)VCl2] (1, TptBu,Me = hydro-tris(3-tert-butyl-5-methylpyrazol-1-yl)borate), which was reduced with KC8 to form a C3v symmetric VII complex, [(TptBu,Me)VCl] (2). Complex 1 has a high-spin (S = 1) ground state and displays rhombic high-frequency and -field electron paramagnetic resonance (HFEPR) spectra, while complex 2 has an S = 3/2 4A2 ground state observable by conventional EPR spectroscopy. Complex 1 reacts with NaN3 to form the VV nitride-azide complex [(TptBu,Me)V≡N(N3)] (3). A likely VIII azide intermediate en route to 3, [(TptBu,Me)VCl(N3)] (4), was isolated by reacting 1 with N3SiMe3. Complex 4 is thermally stable but reacts with NaN3 to form 3, implying a bis-azide intermediate, [(TptBu,Me)V(N3)2] (A), leading to 3. Reduction of 3 with KC8 furnishes a trinuclear and mixed-valent nitride, [{(TptBu,Me)V}2(µ4-VN4)] (5), conforming to a Robin-Day class I description. Complex 5 features a central vanadium ion supported only by bridging nitride ligands. Contrary to 1, complex 2 reacts with NaN3 to produce an azide-bridged dimer, [{(TptBu,Me)V}2(1,3-µ2-N3)2] (6), with two antiferromagnetically coupled high-spin VII ions. Complex 5 could be independently produced along with [(κ2-TptBu,Me)2V] upon photolysis of 6 in arene solvents. The putative {VIV≡N} intermediate, [(TptBu,Me)V≡N] (B), was intercepted by photolyzing 6 in a coordinating solvent, such as tetrahydrofuran (THF), yielding [(TptBu,Me)V≡N(THF)] (B-THF). In arene solvents, B-THF expels THF to afford 5 and [(κ2-TptBu,Me)2V]. A more stable adduct (B-OPPh3) was prepared by reacting B-THF with OPPh3. These adducts of B are the first neutral and mononuclear VIV nitride complexes to be isolated.


Asunto(s)
Azidas , Vanadio , Boratos/química , Ligandos , Solventes
10.
Inorg Chem ; 60(23): 17865-17877, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34719919

RESUMEN

Octahedral coordination complexes of the general formula trans-[MX2(R2ECH2CH2ER2)2] (MII = Ti, V, Cr, Mn; E = N, P; R = alkyl, aryl) are a cornerstone of both coordination and organometallic chemistry, and many of these complexes are known to have unique electronic structures that have been incompletely examined. The trans-[CrCl2(dmpe)2] complex (dmpe = Me2PCH2CH2PMe2), originally reported by Girolami and co-workers in 1985, is a rare example of a six-coordinate d4 system with an S = 1 (spin triplet) ground state, as opposed to the high-spin (S = 2, spin quintet) state. The ground-state properties of S = 1 systems are challenging to study using conventional spectroscopic methods, and consequently, the electronic structure of trans-[CrCl2(dmpe)2] has remained largely unexplored. In this present work, we have employed high-frequency and -field electron paramagnetic resonance (HFEPR) spectroscopy to characterize the ground-state electronic structure of trans-[CrCl2(dmpe)2]. This analysis yielded a complete set of spin Hamiltonian parameters for this S = 1 complex: D = +7.39(1) cm-1, E = +0.093(1) (E/D = 0.012), and g = [1.999(5), 2.00(1), 2.00(1)]. To develop a detailed electronic structure description for trans-[CrCl2(dmpe)2], we employed both classical ligand-field theory and quantum chemical theory (QCT) calculations, which considered all quintet, triplet, and singlet ligand-field states. While the high density of states suggests an unexpectedly complex electronic structure for this "simple" coordination complex, both the ligand-field and QCT methods were able to reproduce the experimental spin Hamiltonian parameters quite nicely. The QCT computations were also used as a basis for assigning the electronic absorption spectrum of trans-[CrCl2(dmpe)2] in toluene.

11.
Inorg Chem ; 60(15): 10990-11005, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34288665

RESUMEN

In this work, we assessed the electronic structures of two pseudotetrahedral complexes of FeII, [Fe{(SPiPr2)2N}2] (1) and [Fe{(SePiPr2)2N}2] (2), using high-frequency and -field EPR (HFEPR) and field-dependent 57Fe Mössbauer spectroscopies. This investigation revealed S = 2 ground states characterized by moderate, negative zero-field splitting (zfs) parameters D. The crystal-field (CF) theory analysis of the spin Hamiltonian (sH) and hyperfine structure parameters revealed that the orbital ground states of 1 and 2 have a predominant dx2-y2 character, which is admixed with dz2 (∼10%). Although replacing the S-containing ligands of 1 by their Se-containing analogues in 2 leads to a smaller |D| value, our theoretical analysis, which relied on extensive ab initio CASSCF calculations, suggests that the ligand spin-orbit coupling (SOC) plays a marginal role in determining the magnetic anisotropy of these compounds. Instead, the dx2-y2ß â†’ dxyß excitations yield a large negative contribution, which dominates the zfs of both 1 and 2, while the different energies of the dx2-y2ß â†’ dxzß transitions are the predominant factor responsible for the difference in zfs between 1 and 2. The electronic structures of these compounds are contrasted with those of other [FeS4] sites, including reduced rubredoxin by considering a D2-type distortion of the [Fe(E-X)4] cores, where E = S, Se; X = C, P. Our combined CASSCF/DFT calculations indicate that while the character of the orbital ground state and the quintet excited states' contribution to the zfs of 1 and 2 are modulated by the magnitude of the D2 distortion, this structural change does not impact the contribution of the excited triplet states.

12.
Chemistry ; 27(43): 11110-11125, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-33871890

RESUMEN

Large separation of magnetic levels and slow relaxation in metal complexes are desirable properties of single-molecule magnets (SMMs). Spin-phonon coupling (interactions of magnetic levels with phonons) is ubiquitous, leading to magnetic relaxation and loss of memory in SMMs and quantum coherence in qubits. Direct observation of magnetic transitions and spin-phonon coupling in molecules is challenging. We have found that far-IR magnetic spectra (FIRMS) of Co(PPh3 )2 X2 (Co-X; X=Cl, Br, I) reveal rarely observed spin-phonon coupling as avoided crossings between magnetic and u-symmetry phonon transitions. Inelastic neutron scattering (INS) gives phonon spectra. Calculations using VASP and phonopy programs gave phonon symmetries and movies. Magnetic transitions among zero-field split (ZFS) levels of the S=3/2 electronic ground state were probed by INS, high-frequency and -field EPR (HFEPR), FIRMS, and frequency-domain FT terahertz EPR (FD-FT THz-EPR), giving magnetic excitation spectra and determining ZFS parameters (D, E) and g values. Ligand-field theory (LFT) was used to analyze earlier electronic absorption spectra and give calculated ZFS parameters matching those from the experiments. DFT calculations also gave spin densities in Co-X, showing that the larger Co(II) spin density in a molecule, the larger its ZFS magnitude. The current work reveals dynamics of magnetic and phonon excitations in SMMs. Studies of such couplings in the future would help to understand how spin-phonon coupling may lead to magnetic relaxation and develop guidance to control such coupling.

13.
Dalton Trans ; 50(10): 3468-3472, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33650611

RESUMEN

DC magnetization data for HgCo(NCS)4 confirm positive value of the zero-field splitting D-parameter. High-frequency and -field EPR gave gz = 2.05, gx = 2.16 and D/hc = 5.39 cm-1. The complex exhibits a field-induced slow magnetic relaxation with two relaxation modes and unusual temperature evolution of the relaxation time.

14.
Inorg Chem ; 60(7): 4610-4622, 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33683105

RESUMEN

The metal-metal-bonded molecule [Bu4N][(HL)2Fe6(dmf)2] (Fe6) was previously shown to possess a thermally isolated spin S = 19/2 ground state and found to exhibit slow magnetization relaxation below a blocking temperature of ∼5 K [J. Am. Chem. Soc. 2015, 137, 13949-13956]. Here, we present a comprehensive spectroscopic investigation of this unique single-molecule magnet (SMM), combining ultrawideband field-swept high-field electron paramagnetic resonance (EPR) with frequency-domain Fourier-transform terahertz EPR to accurately quantify the spin Hamiltonian parameters of Fe6. Of particular importance is the near absence of a 4th-order axial zero-field splitting term, which is known to arise because of quantum mechanical mixing of spin states on account of the relatively weak spin-spin (superexchange) interactions in traditional polynuclear SMMs such as the celebrated Mn12-acetate. The combined high-resolution measurements on both powder samples and an oriented single crystal provide a quantitative measure of the isolated nature of the spin ground state in the Fe6 molecule, as well as additional microscopic insights into factors that govern the quantum tunneling of its magnetization. This work suggests strategies for improving the performance of polynuclear SMMs featuring direct metal-metal bonds and strong ferromagnetic spin-spin (exchange) interactions.

15.
Inorg Chem ; 59(24): 17834-17850, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33258366

RESUMEN

A high-spin, mononuclear TiII complex, [(TptBu,Me)TiCl] [TptBu,Me- = hydridotris(3-tert-butyl-5-methylpyrazol-1-yl)borate], confined to a tetrahedral ligand-field environment, has been prepared by reduction of the precursor [(TptBu,Me)TiCl2] with KC8. Complex [(TptBu,Me)TiCl] has a 3A2 ground state (assuming C3v symmetry based on structural studies), established via a combination of high-frequency and -field electron paramagnetic resonance (HFEPR) spectroscopy, solution and solid-state magnetic studies, Ti K-edge X-ray absorption spectroscopy (XAS), and both density functional theory and ab initio (complete-active-space self-consistent-field, CASSCF) calculations. The formally and physically defined TiII complex readily binds tetrahydrofuran (THF) to form the paramagnetic adduct [(TptBu,Me)TiCl(THF)], which is impervious to N2 binding. However, in the absence of THF, the TiII complex captures N2 to produce the diamagnetic complex [(TptBu,Me)TiCl]2(η1,η1;µ2-N2), with a linear Ti═N═N═Ti topology, established by single-crystal X-ray diffraction. The N2 complex was characterized using XAS as well as IR and Raman spectroscopies, thus establishing this complex to possess two TiIII centers covalently bridged by an N22- unit. A π acid such as CNAd (Ad = 1-adamantyl) coordinates to [(TptBu,Me)TiCl] without inducing spin pairing of the d electrons, thereby forming a unique high-spin and five-coordinate TiII complex, namely, [(TptBu,Me)TiCl(CNAd)]. The reducing power of the coordinatively unsaturated TiII-containing [(ΤptBu,Me)TiCl] species, quantified by electrochemistry, provides access to a family of mononuclear TiIV complexes of the type [(TptBu,Me)Ti═E(Cl)] (with E2- = NSiMe3, N2CPh2, O, and NH) by virtue of atom- or group-transfer reactions using various small molecules such as N3SiMe3, N2CPh2, N2O, and the bicyclic amine 2,3:5,6-dibenzo-7-azabicyclo[2.2.1]hepta-2,5-diene.

16.
Inorg Chem ; 59(22): 16178-16193, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33141572

RESUMEN

Coordination complexes that possess large magnetic anisotropy (otherwise known as zero-field splitting, ZFS) have possible applications in the field of magnetic materials, including single molecule magnets (SMMs). Previous studies have explored the role of coordination number and geometry in controlling the magnetic anisotropy and SMM behavior of high-spin (S = 3/2) Co(II) complexes. Building upon these efforts, the present work examines the impact of ligand oxidation state and structural distortions on the spin states and ZFS parameters of pentacoordinate Co(II) complexes. The five complexes included in this study (1-5) have the general formula, [Co(TpPh2)(LX,Y)]n+ (X = O, S; Y = N, O; n = 0 or 1), where TpPh2 is the scorpionate ligand hydrotris(3,5-diphenyl-pyrazolyl)borate(1-) and LX,Y are bidentate dioxolene-type ligands that can access multiple oxidation states. The specific LX,Y ligands used herein are 4,6-di-tert-butyl substituted o-aminophenolate and o-aminothiophenolate (1 and 2, respectively), o-iminosemiquinonate and o-semiquinonate radicals (3 and 4, respectively), and o-iminobenzoquinone (5). Each complex exhibits a distorted trigonal bipyramidal geometry, as revealed by single-crystal X-ray diffraction. Direct current (dc) magnetic susceptibility experiments confirmed that the complexes with closed-shell ligands (1, 2, and 5) possess S = 3/2 ground states with negative D-values (easy-axis anisotropy) of -41, -78, and -30 cm-1, respectively. For 3 and 4, antiferromagnetic coupling between the Co(II) center and o-(imino)semiquinonate radical ligand results in S = 1 ground states that likewise exhibit very large and negative anisotropy (-100 > D > -140 cm-1). Notably, ZFS was measured directly for each complex using far-infrared magnetic spectroscopy (FIRMS). In combination with high-frequency and -field electron paramagnetic resonance (HFEPR) studies, these techniques provided precise spin-Hamiltonian parameters for complexes 1, 2, and 5. Multireference ab initio calculations, using the CASSCF/NEVPT2 approach, indicate that the strongly negative anisotropies of these Co(II) complexes arise primarily from distortions in the equatorial plane due to constrictions imposed by the TpPh2 ligand. This effect is further amplified by cobalt(II)-radical exchange interactions in 3 and 4.

17.
Inorg Chem ; 59(18): 13281-13294, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32897702

RESUMEN

The high-spin S = 2 Mn(III) complex [Mn{(OPPh2)2N}3] (1Mn) exhibits field-induced slow relaxation of magnetization (Inorg. Chem. 2013, 52, 12869). Magnetic susceptibility and dual-mode X-band electron paramagnetic resonance (EPR) studies revealed a negative value of the zero-field-splitting (zfs) parameter D. In order to explore the magnetic and electronic properties of 1Mn in detail, a combination of experimental and computational studies is presented herein. Alternating-current magnetometry on magnetically diluted samples (1Mn/1Ga) of 1Mn in the diamagnetic gallium analogue, [Ga{(OPPh2)2N}3], indicates that the slow relaxation behavior of 1Mn is due to the intrinsic properties of the individual molecules of 1Mn. Investigation of the single-crystal magnetization of both 1Mn and 1Mn/1Ga by a micro-SQUID device reveals hysteresis loops below 1 K. Closed hysteresis loops at a zero direct-current magnetic field are observed and attributed to fast quantum tunneling of magnetization. High-frequency and -field EPR (HFEPR) spectroscopic studies reveal that, apart from the second-order zfs terms (D and E), fourth-order terms (B4m) are required in order to appropriately describe the magnetic properties of 1Mn. These studies provide accurate spin-Hamiltonian (sH) parameters of 1Mn, i.e., zfs parameters |D| = 3.917(5) cm-1, |E| = 0.018(4) cm-1, B04 = B42 = 0, and B44 = (3.6 ± 1.7) × 10-3 cm-1 and g = [1.994(5), 1.996(4), 1.985(4)], and confirm the negative sign of D. Parallel-mode X-band EPR studies on 1Mn/1Ga and CH2Cl2 solutions of 1Mn probe the electronic-nuclear hyperfine interactions in the solid state and solution. The electronic structure of 1Mn is investigated by quantum-chemical calculations by employing recently developed computational protocols that are grounded on ab initio wave function theory. From computational analysis, the contributions of spin-spin and spin-orbit coupling to the magnitude of D are obtained. The calculations provide also computed values of the fourth-order zfs terms B4m, as well as those of the g and hyperfine interaction tensor components. In all cases, a very good agreement between the computed and experimentally determined sH parameters is observed. The magnetization relaxation properties of 1Mn are rationalized on the basis of the composition of the ground-state wave functions in the absence or presence of an external magnetic field.

18.
Dalton Trans ; 49(29): 10091-10103, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32661526

RESUMEN

We report the first series of homoleptic phosphido iron complexes synthesized by treating either the ß-diketiminato complex [(Dippnacnac)FeCl2Li(dme)2] (Dippnacnac = HC[(CMe)N(C6H3-2,6-iPr2)]2) or [FeBr2(thf)2] with an excess of phosphides R2PLi (R = tBu, tBuPh, Cy, iPr). Reaction outcomes depend strongly on the bulkiness of the phosphido ligands. The use of tBu2PLi precursor led to an anionic diiron complex 1 encompassing a planar Fe2P2 core with two bridging and two terminal phosphido ligands. An analogous reaction employing less sterically demanding phosphides, tBuPhPLi and Cy2PLi yielded diiron anionic complexes 2 and 3, respectively, featuring a short Fe-Fe interaction supported by three bridging phosphido groups and one additional terminal R2P- ligand at each iron center. Further tuning of the P-substrates bulkiness gave a neutral phosphido complex 4 possessing a tetrahedral Fe4 cluster core held together by six bridging iPr2P moieties. Moreover, we also describe the first homoleptic phosphanylphosphido iron complex 5, which features an iron center with low coordination provided by three tBu2P-P(SiMe3)- ligands. The structures of compounds 1-5 were determined by single-crystal X-ray diffraction and 1-3 by 1H NMR spectroscopy. Moreover, the electronic structures of 1-3 were interrogated using zero-field Mössbauer spectroscopy and DFT methods.

20.
Inorg Chem ; 59(9): 6187-6201, 2020 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-32279487

RESUMEN

Stable coordination complexes of TiII (3d2) are relatively uncommon, but are of interest as synthons for low oxidation state titanium complexes for application as potential catalysts and reagents for organic synthesis. Specifically, high-spin TiII ions supported by redox-inactive ligands are still quite rare due to the reducing power of this soft ion. Among such TiII complexes is trans-[TiCl2(tmeda)2], where tmeda = N,N,N',N'-tetramethylethane-1,2-diamine. This complex was first reported by Gambarotta and co-workers almost 30 years ago, but it was not spectroscopically characterized and theoretical investigation by quantum chemical theory (QCT) was not feasible at that time. As part of our interest in low oxidation state early transition metal complexes, we have revisited this complex and report a modified synthesis and a low temperature (100 K) crystal structure that differs slightly from that originally reported at ambient temperature. We have used magnetometry, high-frequency and -field EPR (HFEPR), and variable-temperature variable-field magnetic circular dichroism (VTVH-MCD) spectroscopies to characterize trans-[TiCl2(tmeda)2]. These techniques yield the following S = 1 spin Hamiltonian parameters for the complex: D = -5.23(1) cm-1, E = -0.88(1) cm-1, (E/D = 0.17), g = [1.86(1), 1.94(2), 1.77(1)]. This information, in combination with electronic transitions from MCD, was used as input for both classical ligand-field theory (LFT) and detailed QCT studies, the latter including both density functional theory (DFT) and ab initio methods. These computational methods are seldom applied to paramagnetic early transition metal complexes, particularly those with S > 1/2. Our studies provide a complete picture of the electronic structure of this complex that can be put into context with the few other high-spin and mononuclear TiII species characterized to date.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...